

Validio Software, LLC

110 110th Ave. NE, Suite 310

Bellevue, WA 98004-5828

Tel: (425) 990-8803 Fax: (425) 990-8804

E-mail: info@validio.com Web:www.validio.com

 Author: Pivovarova Irina

Last edited by: Pivovarova Irina

Modification Date: 1/4/2011

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

 Page: 1 of 8

C# Coding Guidelines

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 2 of 8

Table of Contents

INTRODUCTION .. 3

PROJECT AND FILE STRUCTURE .. 3

PROJECT STRUCTURE AND RECOMMENDED SETTINGS .. 3
SOURCE FILE STRUCTURE ... 3
CLASS, INTERFACE AND STRUCTURE LAYOUT ... 3

SOURCE CODE FORMATTING .. 3

NAMING CONVENTIONS .. 5

GENERAL DEVELOPMENT ISSUES .. 6

CODE REUSE POLICY .. 6
CODING CULTURE .. 6

COMMENTING CONVENTIONS .. 7

REGIONS .. 7

WINDOWS FORMS SPECIFICS ... 8

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 3 of 8

Introduction

These guidelines provide the requirements to the source code written in C# for the
applications targeted at the Microsoft .NET platform. If there are no other stated

requirements, the requirements outlined in this document are mandatory and must be
strictly followed by programmers.

The main topics regulated by the guidelines are the source code formatting, naming and

capitalization conventions. Given material also covers the code readability improvement,
reuse policy, and specific issues for the technology areas like ASP .NET or .NET Windows

Forms.

Project and File Structure

Project Structure and Recommended Settings

1. Each project must have its own sub-folder within a solution. Do not place the
solution file and project files within the same folder;

2. Use folders within projects for organizing the source code; the namespaces must
correspond to the folder structure;

3. Specify XML documentation files to force the compiler to produce documentation
for your code and to warn you about the missing comments.

Source File Structure

The source code files must have the following structure (the order in which the source file

elements are listed is also important):

1. “using” declarations;
2. Namespace declaration;

3. [Optional] Enumerations or helper structures relevant to the class stored in this

source file. Please, remember this can affect the VS.NET designer behavior. These
declarations can also be placed in separate files;

4. Class declaration. It is strongly recommended to declare only one class within a
single source file, except for the unit test suites that must accompany the

production code;

Class, Interface and Structure Layout

Classes and structures must be declared in the following pre-defined order:
1. Data members;

2. Constructor(s);
3. Properties (first public, then protected and then private);

4. Methods (first public, then protected and then private);
5. Delegates and events.

NOTE: Some items from this list may be inapplicable for a class, a structure or an

interface. If this case, one must skip the item that cannot be applied under current
circumstances and go on with the next item.

Source Code Formatting

All code must be formatted according to the following rules:

1. The “Tabs” option must be set to the “Keep tabs” mode;
2. The default indent size (4 characters) must be used, if there are no other

conventions within your project team;

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 4 of 8

3. Conditional, looping and switch constructs must be written according to the

following layout examples:

if (file.Exists(fileName))

{

 file.Open(fileName);

}

for (int i = 0; i < MAX_ELEMENTS; ++i)

{

 array[i] = i * MULTIPLY_FACTOR;

}

switch (workMode)

{

 case WorkMode.Add:

 DoAdd();

 break;

 case WorkMode.Update:

 DoUpdate();

 break;

}

4. Blank lines must be used to improve the code readability. Usually they are used to

separate relatively independent sections of a code. One must always use blank
lines:

 After the last “using” declaration and between namespace declarations;
 Between methods;

 Between the declarations of local variables in a method and its first
statement;

 Before multiline or single-line comments except for the comment that is the
first line after a curly brace opening a block of statements;

 Before logically separated blocks of code within a method.

5. Blank spaces must also be used to improve the code readability. It is required to
insert blank spaces:

 When a keyword is followed by a parenthesis. A blank space must be
inserted between the keyword and the parenthesis:

if (condition)

 After commas in argument lists:

int result = Calculate(argumentOne, argumentTwo);

 Between binary operators and their operands:

int result = argumentOne + argumentTwo;

 Between parts of a “for” statement:

for (int i = 0; i < MAX_ELEMENTS; ++i)

Arguments of unary operators must never be separated by blank spaces:

i++;

--counter;

6. All long lines must be wrapped. The recommended maximum length limit is 78
characters. When wrapping a long line, please try to stick to the following

principles:
 Break after a comma;

 Break before an operator;

 Prefer “logical”, or “semantic” breaks to “physical” breaks;
 Align the wrapped part to have one more indent than the beginning of the

line being wrapped:

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 5 of 8

int i;

do

{

 // Here comes a long line.

 bool isSucceeded = a + b + c + d + e – h * MAX_FACTOR / DEFAULT_SCALE

- correctionFactor;

}

7. If there are no other conventions within your project team, long argument lists
must also be wrapped in method declarations as well as in the calling code:

// The method declaration.

public float DoSomethingFromManyArguments(

 int argumentOne,

 int argumentTwo,

 decimal argumentThree,

 string argumentFour)

{

 // Method body goes here.

}

// The calling code.

float result = DoSomethingFromManyArguments(

 1,
 1,

 0.5m,

 “Some text”);

8. If there are no other conventions within your project team, put each attribute
declaration on a separate line:

[Serializable]

[Description("Defines a background color")]

public int BackgroundColor

{

 // Getter and setter blocks.

}

9. Do not declare several variables on a single line. Use separate lines for each

variable declaration:
int customerID;

string customerName;

float salary;

10. It is recommended to similarly align related lines of code, especially the variable

declarations and statements containing binary operators. For example:
Position _position;

string _customerName;

float _salary;

_customerName = “John Doe”;

_salary = DEFAULT_SALARY;

_salary += SALARY_BONUS;

_position = Position.Supervisor;

Use tab stops to perform the alignment.

Naming Conventions

1. One must not use the Hungarian notation or any other type prefixes unless

explicitly permitted by these guidelines;

2. Local variable names and argument names must follow the “camel casing”
convention:

string customerName;

private int DoSomething(int firstArgument, float secondArgument);

3. Private class fields must follow “camel casing” convention with the first letter

preceded by an underscore:

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 6 of 8

private string _customerName;

4. Public class fields must follow the “Pascal casing” convention:

public int CustomerID;

5. Property and method names must follow the “Pascal casing” convention:

public bool ValidateAmount();

public bool FileExists

{

 get;

}

6. Class, structure and enumeration names must follow the “Pascal casing”
convention:

public class CustomerAccount

{

};

private enum WorkMode

{

 Add,

 Update;

}

7. Method names must follow the “Verb” + “Noun” pattern – for example,

“UpdateAccount”;

8. Use singular form, not plural in naming enumerations. In other words,

“WorkMode” is a correct name and “WorkModes” is not;

9. Use meaningful names even for private variables, methods, properties, classes
etc. Avoid using short names like “a”, “b”, “n” except for the commonly used loop

indexers “i” and “j”, primarily for innermost loops. If you abbreviate a name, make
sure the abbreviation will be easily understood by other developers.

General Development Issues

Code Reuse Policy

The “Cut and Paste” programming is strictly prohibited. Use any appropriate object-

oriented means instead. The most popular technique to use is the inheritance; you may
consider extracting a class that provides shared functionality or other refactoring

techniques as well. The following basic principles give some guidance for it:

1. If you feel that some functionality you need could have been already written by
someone else, try to look for it within the project before implementing this

functionality yourself. If you find something, but it does not completely fit your
needs, contact either the developer who wrote this code, or the project leader. In

most cases, existing functionality can be extended to support your particular
requirements;

2. If you develop something that could potentially be reused, design an up-front for

reusability. Do not hesitate to contact a competent person whenever you have any
uncertainty in your design or implementation.

Coding Culture

1. Procedural programming and functional decomposition must be avoided as much

as possible. If you are not sure how to express your idea in object-oriented terms,
please consult a more experienced person;

2. It is obligatory to replace almost all numerical and string literals with symbolic

constants. Exceptions are made either only for self-evident constants like 0 or 1,

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 7 of 8

or literals that "speak for themselves” in a context. Nevertheless, try to use named

constants as much as possible and always give the constants meaningful names;

3. It is also recommended to group related constants into enumerations for integral
types or non-creatable classes with public static constant members for non-

integral types;

4. Share commonly used constants and enumerations as well as auxiliary classes
through the System Frameworks projects;

5. It is required to follow the best OOD/OOP practices whenever possible. Make the

maximum use of the design patterns (GoF, Craig Larman’s GRASP) but apply them
in an appropriate context as it is explained in “Applicability” section of the pattern

description template;

6. Try to avoid long and complex methods. Split your code into several smaller and

manageable routines. Use the refactoring techniques to make changes to your
code whenever possible;

7. Always pay attention to compiler warnings. Ideally, your code must compile with

no warnings at all or at least with a few warnings that cannot be easily avoided.

Commenting Conventions

1. The code must be readable even without rich comments. Convey your thoughts

and ideas to the reviewer or the maintainer by expressiveness of the programming
language itself;

2. Comments must be separated from the leading slashes with a single white space.

The first letter of each sentence must be capital. Comments must end with a
period:

// This is a sample comment. This is yet another comment sentence.

3. Comments must follow the overall line wrapping rules;

4. Comment methods, properties, classes, interfaces and all other supported

language constructs must be in the XML comment format. This format facilitated
by the IDE and the code editor can generate comment templates for you. In

addition, such comments can be easily transformed to an HTML documentation

set;

5. Specify XML documentation files for your projects;

6. While the code is being compiled, presence of a “Missing XML comment…" warning
is highly unwanted;

7. Do not use in-line comments and C-style comments: /* … */

8. Comments must not just paraphrase what has already been expressed by the code

being commented. Try to provide a higher-level, abstract explanation. For
example, commenting the statement “i++” as “Increment i by one” is a bad

practice whereas the comment “Update the number of customer accounts

processed” is much better.

Regions

C# language provides means to create an additional level of the code structure that is
region. Although one must try to keep classes relatively small and simple (and definitely

Title: C# Coding Guidelines

Revision: 1.1

ID: VAL-0000129-GNR

© 2005 Validio Software, LLC.

Proprietary and Confidential

Page: 8 of 8

avoid “The Blob”-like classes1), if code complexity grows up, one must split the code into

several regions, for example, “Data Binding”, “Rendering” and “Validation”.

Regions must organize the code by its purpose from the class user’s point of view.
Therefore, logical groups like the preceding ones are much better candidates for the

regions than “Public Properties”, “Private Variables”, and so on. Nevertheless, this kind of
grouping can also be acceptable if the corresponding code areas are quite large.

Windows Forms Specifics

1. Follow the Microsoft User Interface Guidelines if project requirements do not state

otherwise.

2. If two controls tend to share the same descriptive name (for example, a label and

a text box both facilitate entering a customer’s name), it is allowed to specify the
type of the control as a postfix. Therefore, in the preceding example the controls

names will be “customerNameLabel” and “customerNameText” respectively;

3. Try to move all business logic code out of forms and controls. Use only calls to
business facade or business entity methods in the form and control event

handlers. Again, avoid making “The Blobs” user interface classes.

4. Use the “camel casing” for naming controls within a form or a composite control –

“optionsHeading”;

5. Use the “Pascal casing” for naming forms and controls if they are the actual
classes – “ProductList”;

6. Reuse UI as well as the source code itself. Split your interface into reusable

controls; inherit forms and controls from a common base if appropriate.

Materials Used
Design Guidelines for Class Library Developers

1 “The Blob” is a class in which the most of the program functionality is concentrated,

while the rest of the classes are just data holders or perform merely auxiliary operations
(see “The Blob” AntiPattern for more information).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

